节点文献
高中数学实验教材与普通教材在教材处理方面的比较
【关键词】 ;
【正文】摘 要: 国家教委的《中学数学实验教材》中尤其突出了数学思想和数学方法,体现了知识教学和能力培养的统一。本文就着重探讨高中数学内容中所蕴含的数学思想方法,并对实验教材与普通教材在数学思想方法处理方面进行比较。
关键词:高中数学 实验教材 普通教材 比较
目前高中普遍使用的数学教材是人教社2000年版的《全日制普通高级中学教科书(试验修定本)》(下称普通教材),也有部分高中根据学生的情况选用了原国家教委的《中学数学实验教材》(下称实验教材)。可以说在素质教育推动下,与旧数学教材相比这两套新教材在内容、结构编排上都有了很大变化,都体现了新的数学教育观念,而在原国家教委的《中学数学实验教材》中尤其突出了数学思想和数学方法,体现了知识教学和能力培养的统一。本文就着重探讨高中数学内容中所蕴含的数学思想方法,并对实验教材与普通教材在数学思想方法处理方面进行比较。
普通高中教育是与九年义务教育相衔接的高一层次基础教育,在数学教材的编写上,必须要注意培养学生的创新精神、实践能力和终身学习的能力。与旧教材相比,新的数学教材开始重视渗透数学思想方法,那么高中现行使用的普通教材与实验教材在数学思想方法处理方面有何异同呢?因为内容太多,下面只能粗略的作一比较。
1、相同之处在于
普通教材与实验教材都多将数学思想方法的展示,融合在数学的定义、定理、例题中。例如集合的思想,就是通过集合的定义“把某些指定的对象集在一起就成为一个集合”,及通过用集合语言来表述问题,体现了集合思想方法来处理数学问题的直观性,深刻性,简洁性。对非常重要的数学思想方法也采用单独介绍的方式,如普通教材与实验教材都将归纳法列为一节,详细学习。
2、 不同之处在于
2.1 关于数学方法。 我们举不等式证明方法的例子。实验教材在不等式一章第三节“证明不等式”中详细讲述了不等式证明的方法,比较法、综合法、分析法、反证法。普通教材中虽然也在不等式一章,列出第三节“不等式的证明”介绍比较法、综合法、分析法,但对方法的分析不够透彻,更象是为了解释例题。比如在综合法的介绍中,普通教材只讲:“有时我们可以用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。”而在实验教材更准确更详细的介绍:“依据不等式的基本性质和已知的不等式,正确运用逻辑推理规律,逐步推导出所要证明的不等式的方法,称为综合法。综合法实质上是“由因导果”的直接论证,其要点是:四已知性质、定理、出发,逐步导出其“必要条件”,直到最后的“必要条件”是所证的不等式为止”。分析法的介绍也是这样,在实验教材中给出了分析法实质是“执果索因”的说明,这样学生能清楚的领会综合法、分析法的要义,会证不等式的同时学会了综合法和分析法,而不仅是能证明几个不等式。
2.2 关于数学思想。 在实验教材第一册(下)研究性课题“函数学思想及其应用”中,明确提出“把一个看上去不是明显的函数问题,通过、或者构造一个新函数,利用研究函数的性质和图象,解决给出的问题,就是函数思想”,并举例用函数思想解决最值问题、方程、不等式问题,及一些实际应用的问题。其实普通教材在讲函数时也在用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系进行刻划并加以研究,但从未提函数思想方法。虽然实验教材中只是以研究性课题的形式,对函数思想作以介绍和应用探讨,可这已经是一种重视数学思想方法的信号,随着今后素质教育的推进,和实践经验的积累,我想数学思想方法在数学教材中会有更明确的介绍。我们举向量的例子。
3.实验教材中还增加了一些数学思想方法的介绍。
3.1普通教材在第一册第三章“数列”中只介绍了数列的概念、等差等比数列及其求和,而在实验教材第二册(下)的第十章“数列”中增加了第四节“数列应用举例”介绍了作差,将某些复杂数列转化为等差等比数列的方法。这在潜移默化中也渗透了转化的思想。又如在第一册(上)中,增加了研究性课题“待定系数法的原理、方法及初步应用”,阅读材料“插值公式与实验公式”,虽然不是作为正式章节,但也体现了对数学思想方法的重视。再如数学归纳法普通教材介绍的相当简略,而实验教材详细介绍了什么是归纳法,归纳法的结论是否一定正确,什么是数学归纳法归纳起始命题等问题,还举了大量例子,切实注重让学生真正理解方法。
3.2 实验教材中对向量,解析几何的处理体现了将向量思想,几何代数化思想的引入,并用这些数学思想方法来统领相关数学知识的介绍。实验教材在第六章“平面向量”开首就讲:“代数学的基本思想方法是运用运算律去系统地解答各种类型的代数问题;几何学研究探索的内容是空间图形的性质。……在这一章中,我们首先要把表达“一点相对另一点的位置 ”的量定义为一种新型的基本几何量……我们称之为向量,……这样,我们就可以用代数的方法研究平面图形性质,把各种各样的几何问题用向量运算的方法来解答。再看普通教材第五章“平面向量”的前提介绍:“……,位移是一个既有大小又有方向的量,这种量就是我们本章报要研究的向量。向量是数学中的重要概念之一。向量和数一样也能进行运算,而且用向量的有关知识更新还能有效地解决数学、物理、等学科中的很多问题。这一章里,我们将学习向量的概念、运算及其简单的应用。”显然实验教材是从数学思想方法的高度来引入向量,这也使后面内容的学习可以以此为线索,体现了知识的内在统一。实验教材在第六章“平面向量”之后,紧接着设置了第七章“直线和圆”,从第七章的内容提要中我们看出这样设计是有良苦用心的。内容提要如下:“人们对于事物的认识和理解,总是要经过逐步深化的过程和不断推进的阶段。对于空间的认识和理解,就是先有实验几何,然后推进到推理几何,理推进到解析几何。在第六章,我们引进了平面向量,并且建立了向量的基本运算结构,把平面图形的基本性质转化为得量的运算和运算律,从而奠定了空间结构代数化的基础;再通过向量及其运算的坐标表示,实现了从推理几何到解析几何的转折。解析几何是用坐标方法研究图形,基本思想是通过坐标系,把点与坐标、曲线与方程等联系起来,从而达到形与数的结合,把几何问题转化为代数问题进行研究和解决。”并且在后面直线的方程、直线的位置关系点到直线的距离几节中都自然而然的延续了向量的思想和方法,使直线的学习连惯、完整、深刻。
参考文献:
1王传增, 初中数学教学中的数学思想方法教 《教学与管理》2001年4月
2 李艳秋 发挥义务教材特点,培养学生数学素 《教育实践与研究》2002年8月
3曹才翰 章建跃 数学教育心理学 北京师范大学出版社2001
关键词:高中数学 实验教材 普通教材 比较
目前高中普遍使用的数学教材是人教社2000年版的《全日制普通高级中学教科书(试验修定本)》(下称普通教材),也有部分高中根据学生的情况选用了原国家教委的《中学数学实验教材》(下称实验教材)。可以说在素质教育推动下,与旧数学教材相比这两套新教材在内容、结构编排上都有了很大变化,都体现了新的数学教育观念,而在原国家教委的《中学数学实验教材》中尤其突出了数学思想和数学方法,体现了知识教学和能力培养的统一。本文就着重探讨高中数学内容中所蕴含的数学思想方法,并对实验教材与普通教材在数学思想方法处理方面进行比较。
普通高中教育是与九年义务教育相衔接的高一层次基础教育,在数学教材的编写上,必须要注意培养学生的创新精神、实践能力和终身学习的能力。与旧教材相比,新的数学教材开始重视渗透数学思想方法,那么高中现行使用的普通教材与实验教材在数学思想方法处理方面有何异同呢?因为内容太多,下面只能粗略的作一比较。
1、相同之处在于
普通教材与实验教材都多将数学思想方法的展示,融合在数学的定义、定理、例题中。例如集合的思想,就是通过集合的定义“把某些指定的对象集在一起就成为一个集合”,及通过用集合语言来表述问题,体现了集合思想方法来处理数学问题的直观性,深刻性,简洁性。对非常重要的数学思想方法也采用单独介绍的方式,如普通教材与实验教材都将归纳法列为一节,详细学习。
2、 不同之处在于
2.1 关于数学方法。 我们举不等式证明方法的例子。实验教材在不等式一章第三节“证明不等式”中详细讲述了不等式证明的方法,比较法、综合法、分析法、反证法。普通教材中虽然也在不等式一章,列出第三节“不等式的证明”介绍比较法、综合法、分析法,但对方法的分析不够透彻,更象是为了解释例题。比如在综合法的介绍中,普通教材只讲:“有时我们可以用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。”而在实验教材更准确更详细的介绍:“依据不等式的基本性质和已知的不等式,正确运用逻辑推理规律,逐步推导出所要证明的不等式的方法,称为综合法。综合法实质上是“由因导果”的直接论证,其要点是:四已知性质、定理、出发,逐步导出其“必要条件”,直到最后的“必要条件”是所证的不等式为止”。分析法的介绍也是这样,在实验教材中给出了分析法实质是“执果索因”的说明,这样学生能清楚的领会综合法、分析法的要义,会证不等式的同时学会了综合法和分析法,而不仅是能证明几个不等式。
2.2 关于数学思想。 在实验教材第一册(下)研究性课题“函数学思想及其应用”中,明确提出“把一个看上去不是明显的函数问题,通过、或者构造一个新函数,利用研究函数的性质和图象,解决给出的问题,就是函数思想”,并举例用函数思想解决最值问题、方程、不等式问题,及一些实际应用的问题。其实普通教材在讲函数时也在用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系进行刻划并加以研究,但从未提函数思想方法。虽然实验教材中只是以研究性课题的形式,对函数思想作以介绍和应用探讨,可这已经是一种重视数学思想方法的信号,随着今后素质教育的推进,和实践经验的积累,我想数学思想方法在数学教材中会有更明确的介绍。我们举向量的例子。
3.实验教材中还增加了一些数学思想方法的介绍。
3.1普通教材在第一册第三章“数列”中只介绍了数列的概念、等差等比数列及其求和,而在实验教材第二册(下)的第十章“数列”中增加了第四节“数列应用举例”介绍了作差,将某些复杂数列转化为等差等比数列的方法。这在潜移默化中也渗透了转化的思想。又如在第一册(上)中,增加了研究性课题“待定系数法的原理、方法及初步应用”,阅读材料“插值公式与实验公式”,虽然不是作为正式章节,但也体现了对数学思想方法的重视。再如数学归纳法普通教材介绍的相当简略,而实验教材详细介绍了什么是归纳法,归纳法的结论是否一定正确,什么是数学归纳法归纳起始命题等问题,还举了大量例子,切实注重让学生真正理解方法。
3.2 实验教材中对向量,解析几何的处理体现了将向量思想,几何代数化思想的引入,并用这些数学思想方法来统领相关数学知识的介绍。实验教材在第六章“平面向量”开首就讲:“代数学的基本思想方法是运用运算律去系统地解答各种类型的代数问题;几何学研究探索的内容是空间图形的性质。……在这一章中,我们首先要把表达“一点相对另一点的位置 ”的量定义为一种新型的基本几何量……我们称之为向量,……这样,我们就可以用代数的方法研究平面图形性质,把各种各样的几何问题用向量运算的方法来解答。再看普通教材第五章“平面向量”的前提介绍:“……,位移是一个既有大小又有方向的量,这种量就是我们本章报要研究的向量。向量是数学中的重要概念之一。向量和数一样也能进行运算,而且用向量的有关知识更新还能有效地解决数学、物理、等学科中的很多问题。这一章里,我们将学习向量的概念、运算及其简单的应用。”显然实验教材是从数学思想方法的高度来引入向量,这也使后面内容的学习可以以此为线索,体现了知识的内在统一。实验教材在第六章“平面向量”之后,紧接着设置了第七章“直线和圆”,从第七章的内容提要中我们看出这样设计是有良苦用心的。内容提要如下:“人们对于事物的认识和理解,总是要经过逐步深化的过程和不断推进的阶段。对于空间的认识和理解,就是先有实验几何,然后推进到推理几何,理推进到解析几何。在第六章,我们引进了平面向量,并且建立了向量的基本运算结构,把平面图形的基本性质转化为得量的运算和运算律,从而奠定了空间结构代数化的基础;再通过向量及其运算的坐标表示,实现了从推理几何到解析几何的转折。解析几何是用坐标方法研究图形,基本思想是通过坐标系,把点与坐标、曲线与方程等联系起来,从而达到形与数的结合,把几何问题转化为代数问题进行研究和解决。”并且在后面直线的方程、直线的位置关系点到直线的距离几节中都自然而然的延续了向量的思想和方法,使直线的学习连惯、完整、深刻。
参考文献:
1王传增, 初中数学教学中的数学思想方法教 《教学与管理》2001年4月
2 李艳秋 发挥义务教材特点,培养学生数学素 《教育实践与研究》2002年8月
3曹才翰 章建跃 数学教育心理学 北京师范大学出版社2001
- 【发布时间】2023/8/24 21:12:17
- 【点击频次】248