中国学术文献网络出版总库

手机也能上知网 上手机知网,随时随地畅游知识海洋!请手机访问:wap.cnki.net

手机知网客户端
知识出版物超市平台推广
辞书大典广告

节点文献

在小学数学课堂培养创新思维能力之我见

 

【作者】 朱 燕

【机构】 大石小学

【摘要】

【关键词】
【正文】摘   要:数学是一门思维能力很强的科学,"数学是思维的体操"(加里宁语)。故而对学生数学思维的培养,尤其是对其核心--创新思维能力的培养,是数学教学的重点,也是数学教学的任务而且是素质教育中培养"创造人才"的要求。
  关键词:小学数学教学;创新思维能力;培养
  在小学数学教学中培养学生的创新思维品质,不是一朝一夕的事情,要循序渐进,踏踏实实的训练,做到全方位平衡发展,要求教师重视培养学生的创造性思维,要从培养学生思维的灵活性,求异性和独创性入手,给学生提供更多的创造机会,让不同智力水平的学生的思维能力都能得到不同程度的发展。
  培养思维的敏捷性。思维敏捷不仅在速度上要求快,而且注意考虑周密。教学时首先要注意留给学生思考的时间,引导学生去想,逐步要求学生注意很快地想出问题解决的方法,并对想得快的又想得对的给以鼓励。同时注意防止学生单纯地为了求快,思考轻率而不够周密。计算要在正确的基础上适当提出速度要求,注意适当安排限定时间的练习。有些计算或应用题的分析,要在适当时候引导学生简缩思维。例如被乘数、乘数中间、末尾有0的乘法,要启发学生想有什么简便算法,并在计算中自觉地运用。
  培养思维的灵活性。思维的灵活性的特点主要表现在,善于从不同角度、不同方向来思考问题,能用多种方法解决问题;能根据具体情况,灵活地运用知识来处理问题。要培养思维的灵活性,首先要加强算理教学,使学生切实理解和掌握规律性知识和一般计算方法,通过练习逐步巩固并加深理解,避免死记硬背。学生切实掌握了,就为灵活运用奠定了基础。教师在教学计算步骤、解题过程以及书写格式等做出一些规定是必要的,但在一定条件下要允许学生灵活,不宜统得过死。例如,中年级学过乘法交换律以后,在算式中就要允许被乘数、乘数交换位置书写。分数混合运算只要求适当保留运算的过程,不必强调把每一步计算都完整地写出来。在练习中要注意适当出现一些概念或习题的变式,还要安排一些逆思考的题目,以利于培养思维的灵活性。
  设疑激趣,拓宽思维时空。古人早有“行成于思毁于随”的戒言,也有“学而不思则惘,思而不学则殆”的训导,如果缺乏必要的深思熟虑,就不会促使思维从量变到质变的瞬间飞跃,迸放出创新的火花。“打开一切科学的钥匙都毫无疑义的是问号,而生活的智慧大概就在于逢事都问个为什么”。在教学实践中,教师要给学生创造充分的思维时空,既要张弛有度,遵循小学生生理和心理周期性起伏变化的规律,还要“处处留心搜求,把进行的其它活动或接触到的其它事物有意无意地和自己思考的问题联系在一起。这样一遇到适当的剌激,就会触发灵感的产生”。因此教师要灵活布设问题悬念,努力创设问题情境,以此激启学生积极思考。特别是要脚踏实地,充分利用课堂教学的空间和时间,把握教材的内容特点,开拓创新思维的培养途径。以教学“10的分与合”一课时为例,我预先准备了一个盒子,盒子里装了10支铅笔。一上课,我请一名学生上台摸铅笔,然后老师根据学生摸到的支数猜盒子里剩下的支数,经过几次猜都猜对了,学生感到很好奇,然后老师趁热打铁,说:“因为老师知道了盒子里总共有10支,然后根据10的分成就能猜着了,你们想学会这个本领吗?”数学知识的神奇力量激起了学生强烈的求知兴趣,使学生趣味盎然地参与学习,积极思考。
  充分利用游戏,创新思维在实践中触发。杨振宁博士曾作过这样的对比,中国学生学习成绩比一起学习的美国学生好得多,然而十年后,科研成果却比人家少得多,原因何在?其实就在于美国的学生思维活跃,动手能力和创新能力强。针对小学生在平时学习中缺乏参与性活动这一现状,新教材为学生设计了大量的、具有思考价值的游戏、比赛,(如:对口令、猜数、青蛙过河等等),我很重视这些形式的题目,在课堂上总是多给学生一些自由的时间,让学生多进行一些创造性的活动,使每个学生都能积极地参与到课堂中来,开动脑筋、拓宽思维。
  大胆猜想,培养求异心智。心智是一种直觉,它是非常灵活迅捷而复杂的心理活动现象,是在原有知识的基础上,通过对事物的表象感知,借回忆、想象、猜测等心理活动,闪电般跳跃式地对事物本质进行判断,它是创造思维的灵魂。牛顿认为“没有大胆的猜想,就做不出伟大的发现。”在训练学生直觉思维方面,应鼓励学生大胆猜想,敢于创新,冲破思维定势,摆脱常规约束,允许学生突发奇想,甚至异想天开。对学生回答问题不要苛求过于严谨全面,让它们发现什么说什么,想到多少说多少,说出表象的理解或猜想也可以,不一定要说个所以然;教师对学生独到的见解或奇异的想法要因势利导,引上思维的轨道,让他们想出点门道来。例如,在教学“能被3整除的数”时,我先让学生猜一猜:“能被3整除的数”会有什么特征?有些学生可能受到“能被2、5整除的数”的特征影响,都在猜测特征是“个位数是3、6、9的数”。老师顺势出示一组个位是3、6、9的数,如13、16、19、23、26、29……结果学生发现这些数都不能被3整除,学生的思维因为猜想的落空陷入了困惑状态,由此引发了他们解决疑惑的心理趋势;而教师乘机再列出另一组数,如12、15、18、21、24、27……学生发现,这些数反而都是能被3整除。这样,通过一系列的猜想与困惑,造成学生认知上不平衡,从而激发起学生继续探索的欲望:为什么后面这一组数都能被3整除呢?学生又带着对这个问题的好奇心进行猜测探索,最后发现原来能被3整除的数的特征是:一个数各个数位上的数的和能被3整除,这个数就能被3整除。这种探索方法的基本程序就是:提出问题,学生猜想,探索规律,验证结论。它就是要让学生先敢于对数学问题进行大胆猜测,再通过探究寻找规律,这样得到的知识对学生来说是有效的,得到的也不仅仅是一种知识,更多的是数学思维能力的训练。所以,在学习数学时,教师要鼓励每个学生应有一点敢于猜想的意识,多进行“猜一猜”的活动。猜想是不受现成事实的束缚,它包含着可贵的大胆想象和推测的成分。教师要敢于通过“尝试”、“猜想”等问题情景的创设,大胆暴露学生的思维过程,引导学生沿着合理的解题思路去思考。当然,在猜想中,要提醒学生仔细观察,分析已知,发现规律,以此类推;或者提醒学生利用结果,进行猜测,推而广之。总之,猜想锻炼的是学生发现规律,利用规律解决问题的能力,能让学生活跃的思维在迸发、碰撞中激发出创新的火花。
  虽然数学具有严谨的逻辑性,但这只是对于理论的完成形式推演论证而言,而理论的学习掌握,解题思路的形成或数学知识的应用,特别是数学知识的发展完善,新理论的发明建构,都离不开灵活自由的创造性思维,它推动人类的进步,创造人类文明,是人类发展进步的巨大财富。我们每一个教育工作者,一定要重视学生创新思维能力的培养,为学生提供思考、探索和创新的具有开放性和选择性的最大空间,我们就能引导学生自己发现问题,进行创造性学习,培养创新思维,为成为适应二十一世纪科技发展所需要的人才奠定基础。
  • 【发布时间】2022/9/29 21:47:41
  • 【点击频次】209